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Dispersion of tracers in the deep ocean 
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Exact solutions are used to contrast the behaviour of vertical dye streaks and of point 
discharge in the deep ocean. After a few inertial periods the growth of the 
contaminant cloud in both cases can be modelled by a diffusion equation with slowly 
varying coefficients. However, the apparent long-term diffusivity for the dye streak 
can be as much as three times as large as the horizontal diffusivity for the point 
discharge, depending upon the precise time of release. This anomalously large rate 
of spreading for the dye streak can persist for several weeks until sufficient time has 
elapsed for vertical diffusion over the vertical lengthscale of the dominant inertial- 
frequency waves. 

1. Introduction 
The possible use of the sea bed for the disposal of high-level radioactive waste has 

led to increased interest in the mechanics of contaminant dispersion in the sea. Indeed, 
a deep-ocean tracer-release experiment (DOTRES) is being planned. One facet of 
the dispersion problem is to quantify the great disparity between the horizontal and 
vertical rates of spreading (Ewart & Bendiner 1981). 

The prevalent internal waves and inertial-frequency oscillations in the deep ocean 
distort a contaminant cloud back and forth about its averaged shape. If a t  the 
extreme stages of such a distortion material is diffused out of the cloud, then on return 
to the mean state the 'lost' material will be displaced relative to the main body of 
the cloud. Thus there is an augmented rate of spreading due to the currents. This 
shear-dispersion mechanism was first identified by Townsend (1951), and made more 
widely known by Taylor (1953). A qualitative explanation for the larger horizontal 
than vertical rate of spreading in the deep ocean is simply that the oscillatory 
currents, and hence the displacements, are predominantly horizontal. 

A particular velocity field that is amenable to mathematical analysis is when the 
velocity varies linearly with height. Okubo (1967) gives solutions for the first few 
horizontal moments of the concentration distribution for a point discharge of dye. 
TJnfortunately, because of the vertical averaging process, these global moments can 
be quite misleading (see $5). This same linear velocity profile has been studied by 
Young, Rhines & Garrett (1982), who derive the concentration distribution for a 
vertical dye streak. A disconcerting feature of their solution is that the effective 
long-term horizontal diffusivity can vary by a factor of 3, depending upon the 
precise time of release. Such intrinsic variability of the horizontal rate of spreading 
would greatly reduce the usefulness of any single dye-release experiment in the ocean. 

The primary purpose of the present paper is to derive the concentration distribution 
for a point discharge of dye. As was correctly surmised by Young et al. (1982), there 
is no longer a strong memory effect and the horizontal shear-dispersion coefficient 
is equal to the minimum of the range of values for a vertical dye streak. A secondary 
purpose of this paper is to clarify the nature of the memory effect for a vertical dye 
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streak. It is shown that the anomalously large rate of horizontal spreading can persist 
for several weeks, until sufficient time has elapsed for vertical diffusion over the 
vertical lengthscale of the oscillatory shear. 

2. Advection-diffusion equation in distorted axes 
The stable vertical stratification of the oceans means that the steady and unsteady 

flow velocities are predominantly horizontal, with horizontal lengthscales greatly in 
excess of the vertical lengthscales. Thus we model the advection-diffusion equation 
for the contaminant concentration C ( X ,  z ,  t )  : 

c?,c+u(z, t )  dzC-K1 diC-K, d i c  = 0, (2.1) 

where u is the horizontal velocity, K,  the horizontal diffusion coefficient, and K ,  the 
vertical diffusivity. (Strictly, the use of diffusivities for a turbulent fluid is justifiable 
only if the space- and timescales on which we are studying the dispersion process 
exceed the corresponding scales for the turbulence. Furthermore, (2.1) does not 
provide any information concerning concentration fluctuations, which can be vitally 
important in the context of high-level radioactive waste products.) 

Close to the level of discharge ( z  = 0) we can approximate the velocity profile by 
a linear shear 

The linear shear (2.2) tilts particles back and forth. Thus the shape of the dye cloud 
can be expected to share a t  least some of the tilting. Hence we introduce the distorted 

u = u,(t)+za(t). (2 .2)  

horizontal coordinate t 
S X- uo(t’)dt’-zG(t,to), (2 .3)  s,. 

where to is the time of discharge, and the distortion factor G remains to be chosen. 
Careful application of the change-of-variable rules for partial differentiation leads to 
the transformed equation 

dt  c + ( a - d ,  G) z8-y C- [K,  + G2K3] 8% c +2G‘K3 d, d, c - K ~  d:y c = 0. (2.4) 

For clarity we have restricted attention to unidirectional flows. The extension to 
include a second horizontal coordinate is given in $6.  

3. Young, Rhines & Garrett’s solution 
If the initial conditions are independent of z then the choice 

t 
G = a(t’)dt’ 

It,, 

leads to the time-dependent diffusion equation 

dt C- [K,  + K ,  G2] dg c = 0. 

For a vertical dye streak the solution is 

p exp ( -$X2/c2) 
C =  

v( 2n)i 

with 

(3.2) 

(3.3) 

(3.4) 

(Young et al. 1982, equations (8), (9)).  
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FIGURE 1. The horizontal variance as a function of time for a vertical dye streak released a t  
times wt, = 0, in, 477 in an oscillatory linear shear with ( a / ~ ) ~  = 20K,/K, .  

For a steady current, with a constant, (3.4) yields the result 

g 2  = 2h-,(t - t o )  + + 2 h r 3 ( t  - t , ) 3 .  (3 .5)  

In  this case the variance never settles down to a linear growth rate, so the dispersion 
cannot be modelled in terms of a horizontal diffusion equation. 

If tbe velocity shear is sinusoidal in time, 

a(t)  = or cos wt,  (3.6) 

then t)he effective horizontal diffusivity (3.4) is given by 

K3{1 +:! sin2 wt , -4  sin wt, sin wt-cos 2 ~ 6 ) .  (3.7) 
Y 

Figure 1 shows the evolution of 
At large times after discharge we can ignore the oscillatory contribution to D,, 

because the oscillations in v2 become dominated by the systematic long-term growth. 
From (3 .7)  we find that the effective diffusion coefficient (U, )  comprises a diffusive 
term and a shear term: 

for several different discharge times t o .  

1 0 1 2  
(D, j = Kl+G(i) K3{l + 2  sin2 wt,}. 

Y 

(3.8) 

In  oceanic conditions the tilt 01/01 of particle surfaces can be quite large (Gargett et 
al .  1982). Thus there is indeed a great disparity between the horizontal and vertical 
rates of spreading (DJ and K 3 .  As remarked in $1, there is a factor-of-three 
variability in the shear term depending upon the initial phase of the oscillatory 
cwrrent when the dye streak was released. 

For a random current there is a similar persistent memory of the initial conditions. 
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M'e introduce a reference time t" such that on average the subsequent displacements 
are symmetrical : t 

(W) = (1 a ( t f ) d t ! )  = 0. (3.9) 
t" 

Thus we can decompose the distortion factor G into a symmetric part and a memory 
part : 

G = C:-Jr  a(t') df ' .  (3.10) 
- t o  

The resulting formula for the long-term effective diffusivity is 

( Dl ) = K ,  + K3 (02) + K ,  [ 5:" a ( t  ) 4 2. (3.11) 

The final memory term can be thought of as being the effect in the horizontal plane 
of thc vertical diffusion of the mean tilted z-structure of the tracer distribution. 

4. Solution for a point discharge of dye 
Townsend (1951) noted that for a point release in a time-dependent linear shear 

flow the contaminant distribution is exactly Gaussian. Thus, if the distortion factor 
C: is wrrcv.tly chosen, we ran then expect the advection-diffusion equation (2.4) to 
have a solut,ion 

= 4? exp ( -&Y2/ Vl -+.z2/ V,) 
2 7 4  v: 

where l:(t,  t o ) ,  V3(t, t o )  are the horizontal and vertical variances. 
The direct substitution of the proposed solution (4.1) into (2.4) generates terms of 

the forms S 2 c ,  z2c,  Szc,  c .  The first three of these classes of terms yield the respective 
equations 

2K3G 
- a--, 

dG -- 
dt v, 

(4.3) 

(4.3) 

while the fourth class of terms is a linear combination of (4.2) and (4.4). 
For a point discharge the vertical variance has precisely the pure diffusive value 

1.'3 = 2K3(t- to) ,  (4.5) 

and the corresponding solution for the distortion factor is 

a(t') dt' 

A crucial difference from the vertical-dye-streak result (3.1) is the fading memory 
(t' - to)/(t- t ,) .  Thus at large times after discharge the distortion of the contaminant 
cloud becomes independent of the initial conditions. 

If the velocity shear is sinusoidal, 

a = cr cos wt, (4.7) 
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FIGURE 2 The horizontal variance as a function of time for a point discharge of dye released a t  
times wt, = 0, in. in an oscillatory linear shear with ( a / w ) *  = ZOKJK,. 

then the effective horizontal diffusivity (4.2) is given by 

4 sin wt[cos wt - cos wt,] 2[cos wt - cos ~ t , ] ~  

w y t  - t,)2 
D, = Kl+- - K3 1- ~ 0 ~ 2 w t +  + 

2 w  w(t-to) 
(4.8) 

‘(7 { 
Figure 2 shows the evolution of V, for several different discharge times to. After a 

few flow periods the oscillations in V, become dominated by the long-term growth. 
The effective long-term diffusion coefficient (Ill) is given by 

(4.9) 

As surmised by Young et al. (1982), this is equal to the minimum value for the 
vertical-dye-streak problem (3.8). Moreover, there is no longer the persistent-memory 
effect. The diffusivity is merely a function of the fluid properties ( K l ,  K 3 )  and of the 
wave field ( 0 1 , ~ ) .  

5. Horizontal moments for a point release 
Although he was aware that a complete solution could be found, Okubo (1967) chose 

to calculate the horizontal moments of the concentration distribution. We can recover 
his main results by vertically averaging the exact results (4.1). 

To do this we first note that the quadratic decay exponent has the alternative forms 

2 

22 
(x - Jlt uo(t’) dt’ - zG] 

a +- 
2 Vl 2K 

“ x - l  2 n uo(t’)dt’12 

v, + G2K 

(x- 1 uo(t’) dt’) GV3 
0 

+; [.- K+G2V3 



136 R. Smith 

FIGVRE 3. The shape of a contaminant cloud (for a point discharge) and its vertical integral 
when (a)  the particle displacement is at a maximum, and ( h )  when it is zero. 

Similarly, the denominator in the exact solution (4.1) has the alternative forms 

(5.2) 

Thus we can infer that in any vertical section the concentration distribution (4.1) 
is Gaussian, and the vertically integrated concentration //cl/ is given by the further 

(5.3) 

The pivoting of the velocity profile about the discharge height x = O  has the 
consequence that vertical integrating totally obscures the back-and-forth tilting of 
the contaminant distribution (see figures 3a, 6 ) .  Thus the vertically integrated 
solution (5.3) has a centre of mass that simply moves with the velocity uo(t) a t  the 
discharge height. Moreover, instead of the actual horizontal variance V,, the 
expression (5.3) for llcll has variance Vl+G2V3. For a sinusoidal current (4 .7)  the 
distortion factor C, given by (4.61, is likewise sinusoidal. This leads to the asymptotic8 
expressions 

vl - 2 ~ 1 ( f - t 0 ) + ( ~ ) ~ K , ( r - r o ) ,  w (5.4) 

&+G2V3 - 2K,( t - - t0)+2 - K 3 ( t - t 0 ) -  - K3(1-t0) cos 2wt (5.5) (3 (3 
(see figure 4). The large oscillatory term in (5.5) would suggest that a t  no stage could 
the dispersion be modelled by a diffusion equation (Okubo 1967, equation (10)). Also, 
when the tilt a / w  is large, the linear trend is twice the non-averaged result (5.4). 

For steady currents the vertically averaged moments are equally misleading. With 
01 constant, the two expressions for the horizontal variance are 
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Time wt - 4n 

l’he horizontal variance of the rerticallv integrated concentration as a function of time - 
for a point discharge of dye released at time wt, = 0, in, $r in oscillatory linear shear with 
(Z/w)Z = 20K, /K , .  

with a factor-of-four difference in the shear dispersion. It happens that (5.7) is the 
same as the result (3.5) for a vertical dye streak. Surprisingly, Okubo (1967, equation 
(10)) did not note the disparity between his vertically averaged result (5.7) and the 
non-averaged result (5.6) first derived by Carter & Okubo (1965). 

6. A three-dimensional Gaussian solution for a point release 
If the results are to be applied to real oceanic conditions (Young et al. 1982), then 

one complication that has to  be dealt with is that the oscillatory currents are 
two-dimensional. This is intrinsically the case for the circular particle displacements 
associated with inertial frequency oscillations. 

Thus, we generalize the preliminary analysis of Q 2 to incorporate a y-component 
of velocity: 

2, = ‘lo(t)  + ol , ( t )  z ,  

t 

Y = y-j-o z,,(t’)dt’-zO,(t), 

a, C+ (a,  -8, G,) z ~ , c +  (a,-& U2) C- [ K ,  +G,Z K3] 3% c - ~ G ,  G, K3 8, ay c 

- [K,  + (7; K3]  c + 2G, K ,  day d, c + 3G, h’, d y  d, c - K3 8: c = 0. (6.3) 

Here (al ,a,)  are the two components of the velocity shear, (G,,G,) are the two 
components of the coordinate distortion, and we have assumed that the diffusion K,  
is the same in both horizontal directions. 
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As noted by Townsend (1951) ,  the Gaussianity of the solution for a point source 
is not dependent upon the number of dimensions. In  the horizontal plane the principal 
axes are not necessarily aligned along the coordinate axes. Thus we pose the solution 

(9 cos 4 + I’ sin q5), 
2 v1 

( Y cos 4 - X sin #), 22 

+-, (6.5) 
2 v2 2 v 3  

with P =  + 
where $ ( t )  is the changing orientation of the principal axes. 

The counterparts of equation (4.1) are: 

1 dF< 
2 dt 

l d V ,  
2 - 2  dt 

D, = -__ = K,+K,(G, cos $+G, sin $)2, 

D - -~ = K,+K,(G, cos $--GI sin $)2, 

_ -  d 4  2K3(Gl cos$+G,sin $) (G, cos $-GI sin $) - 
dt L; - J‘, 

while the results (4.5), (4.6) are unchanged 

1; = 2K3t ,  G, = j: Sa,(t’) dt’, G, = j: ;a,(t’)dt’. 
(6.8), ( 6 . 9 ) ,  (6.10) 

Again, we emphasize that the t ‘ / t  factors imply that at moderately large times the 
distortion factors become independent of the time of discharge. Thus there is not any 
persistent memory effect a t  large times after discharge. 

As an illustrative example we take the horizontal particle displacements to  be 
elliptical with principal axis at angle $ and with ellipticity e :  

a, = ~ [ c o s  $ cos wt+ (1 - e 2 )  sin $ sin wt] ,  (6 .11)  

a2 = ;i[sin $ cos wt- (1 - e 2 )  cos $ sin o t ) .  (6.12) 

Restricting our attention to large times after discharge, we have 

cr. 
G’, - - [cos $ sin wt - (1 - e 2 )  sin $ cos wt] ,  (6.13) 

w 

cr. 
G,--[sin$sinwt+(1-ee2) c o s $ c o s w t ] .  (6.14) 

Tentatively, we suppose that the contaminant concentration ellipse becomes aligned 
with the flow ellipse, i.e. q5 - $. Thus a t  large times we have 

w 

(6.15) 

K3(1-ee2)2{1+cos20t}, (6.16) 

(6.17) 
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Vnless the ellipticity is zero, the contaminant cloud grows more rapidly in the 
principal than in the transverse direction. Hence V, - V, grows linearly with time, and 
therefore the angle $ oscillates with ever-decreasing amplitude. Thus it is indeed 
consistent to  assume that $ asymptotes to the assumed orientation $. The principal 
values of the effective long-term horizontal dispersion coefficient are related to the 
respective magnitudes of the shears in the two directions : 

(6.18) 

(6.19) 

In  the limiting case of a circular current, we have (0,) = (D,), .,a the contaminant 
cloud becomes circular, and the angle ceases to be of significance. 

7. A point release in a general shear 
Another complication of the real oceans is that the internal waves have all vertical 
lengthscales and may be comparable with the vertical size of the dye cloud. Thus the 
effective horizontal velocity uo( t )  and the effective linear shear rate a(t)  may differ 
from the obvious Taylor-series definitions. For clarity we shall revert to the 
two-dimensional case with flow confined to the x-direction. 

The Gaussian solution (4.1) can be regarded as being the first term in a two- 
dimensional Hermite series expansion (Chatwin & Sullivan 1981). I n  view of the 
simple x-independent structure of the flow field, it is convenient to deal with one 
dimension at a time. At each level we take the centroid position to be at x = ~ ( 2 ,  t ) ,  
and the variance to be I.;(z, t ) .  Thus we pose the Hermite series (Smith 1982, equation 

wit>h X = x - x ( z , t ) ,  x = V, = 0 at  t = to. (7.2) 

The coefficients of the first few Hermite polynomials in the advection-diffusion 
equation (2.1) yield the equations 

dtU(@-K 3 z  d2a(0) = 0, (7.3) 

Subsequent equations in this sequence are given by Xmit,h (1982, equat'ion (2.7)). Here 
it suffices to note that the higher-order coefficients dn)  are very small. 

For a point release the solution of (7.3) is 

with 1; = 2K,( t - t0) .  (7 .7)  
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Thus we can evaluate the quotient 

Immediately after discharge it is this z / ( t - t o )  factor in the equation (7.4) for the 
centroid that makes the memory fade so rapidly, on a time scale of just one wave 
period. 

At large times we can ignore the z / ( t - t , )  factor, and the equations (7.4).  (7.5) for 
the centroid and the horizontal variance become exactly the same as for a vertical 

(7.9) d , x - K 3  d ix  = u ( z , t ) ,  
dye st'reak: 

a, r.; - K3 8; v1 = 2K1 + 2K,(d, x)" (7.10) 

In  particular, for a sinusoidal velocity field 

a 
m 

u = - sin mz cos wt ,  

t'he equilibrium solutions of (7.9),  (7.10) are 
- 
Q! 

m w2+,m4Ki 
w sin wt + mzK3 cos wt x = - sin mz 

Hence, for an internal wave spectrum there is a cut-off 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

to the range of vertical wavenumbers that contribute t'o the shear dispersion process 
(Young et al.  1982). 

8. A vertical dye streak in a sinusoidal shear 
For a vertical dye streak the memory timescale for the centroid position and for 

the variance is of order l/m2K3. Thus in the real ocean the memory paradox discussed 
in 93 persists until sufficient time has elapsed for vertical diffusion over the vertical 
lengthscale of the internal waves. 

As a specific example, we again use the sinusoidal velocity profile (7.1 1 ) .  The exact 
solution of (7.9) for the centroid displacement of an initially vertical dye streak is 

a w sin ot + m2K3 cos wt 

w2 + m4 Ki 
x = ; sin mz 

z 
m w 2  + m4Kg 

w sin wt, + m2K3 cos wt, 
-- sin mz exp [ -m2K3( t - t0 ) ]  . (8.1) 

The corresponding solution for the variance comprises a constant and a cos 2 m z  
component. The time-dependent diffusivity \ID, 1 1  associated with the vertically 
averaged variance is given by 

(8.2) 
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FI(:T-RE 5 .  The vertically averaged horizontal variance as a function of time for a vertical dye streak 
released a t  times wt, = 0, in, in in an oscillatory sinusoidal shear with ( L / W ) ~  = 2 0 K , / K 3  and with 
vertical wavenumber ( a )  m = a(w/K3) i ;  ( b )  m = i ( w / K 3 ) i .  

where the memory effects are incorporated int>o the time-dependent function F( t ,  to )  : 

F = 1 + 2 sin2 (wt, + 8 )  exp ( - 27a2K,(t - t o ) )  - cos (wt + 20) 

-4 exp ( - m 2 K , ( t - f O ) )  sin (w t+8 )  sin (wt ,+0 ) ,  (8.3) 

wit>h 
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I t  is the first two non-oscillatory terms that show how the effective long-term 
horizontal diffusion coefficient for a vertical dye stream gradually reduces to the value 
(7.13) appropriate for a point release. 

The intrinsic variability of the apparent rate of horizontal diffusion for a vertical 
dye streak is down to about 30q, after a time of l / m 2 K 3  (see figures 5 a , b ) .  For 
example, if in m.k.s. units we take 

K ,  = 5 x 10-5, = 0.1 (8.5) 

(Ewart & Bendiner 1981; Gargett et al. 1981), then our estimate of this memory 
timescale is 3 x lo6 s ,  or about 23 days. The DOTREX experiment is envisaged as 
having a duration of about a month in the first instance. Thus we conclude that a 
point release is very much to be preferred to a vertical streak if the memory effect 
is to be avoided. 

1 wish to thank Bill Young, Peter Rhines. and Chris Garrett for encouraging me 
to write this paper. This work was funded by British Petroleum and the Royal 
Society. 
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